The Project ========= Overview -------------- Culinary data analysis with complete workflow: exploration → development → visualization → deployment. Development Process --------------------------- **1. Data Exploration (00_eda/)** * Jupyter notebooks for exploratory analysis * 9 notebooks organized by theme (trends, seasonality, weekend, ratings) * Pattern and insight identification **2. Application Development (10_preprod/)** * Transform notebook analyses → reusable Python modules * Streamlit application for interactive result presentation * Modular architecture (utils, visualization, data, exceptions) **3. Deployment (20_prod/)** * Automated CI/CD pipeline * Separate preprod/prod environments * Continuous testing and validation EDA → Application Mapping --------------------------------- Each Streamlit analysis is based on one or more EDA notebooks: * **Trend analysis** ← 01_long_term/recipe_analysis_trendline.ipynb * **Seasonality analysis** ← 02_seasonality/recipe_analysis_seasonality.ipynb * **Weekend analysis** ← 03_week_end_effect/recipe_analysis_weekend.ipynb * **Ratings analysis** ← 01_long_term/rating_analysis.ipynb The notebooks contain complete exploration (descriptive statistics, visualizations, hypothesis testing). The Streamlit application presents results interactively. Technical Stack --------------- * Python 3.13.7 * Streamlit 1.50.0 (web interface) * DuckDB 1.4.0 (OLAP database) * Polars 1.19.0 (data processing) * Plotly 5.24.1 (visualizations) Environments -------------- * **PREPROD**: https://mangetamain.lafrance.io/ (port 8500) * **PRODUCTION**: https://backtothefuturekitchen.lafrance.io/ (port 8501) Applied Standards ------------------- * Complete type hinting * Pytest unit tests (93% coverage) * Google-style docstring documentation * Automatic PEP8 validation * Custom exception handling * CI/CD pipeline with GitHub Actions